
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

308 | P a g e

www.ijacsa.thesai.org

CASC 3N vs. 4N: Effect of Increasing Cellular

Automata Neighborhood Size on Cryptographic

Strength

Fatima Ezzahra Ziani1, Anas Sadak2, Charifa Hanin3, Bouchra Echandouri4, Fouzia Omary5

Computer Science Department

University Mohammed V

Rabat, Morocco

Abstract—Stream ciphers are symmetric cryptosystems that

rely on pseudorandom number generators (PRNGs) as a primary

building block to generate a keystream. Stream ciphers have

been extensively studied and many designs were proposed

throughout the years. One of the popular designs used is the

combination of linear feedback shift registers (LFSRs) and

nonlinear feedback shift registers (NFSRs). Although this design

is suitable for both software and hardware implementation and

provides a good randomness behavior, it is still subject to attacks

such as fault attacks and correlations attacks. Cellular automata

(CAs) based stream ciphers are another design class that has

been proposed. CAs display good cryptographic properties as

well as a good randomness behavior, also high computational

speed and a higher level of security. The use of CAs as

cryptographic primitives is not recent and has been thoroughly

investigated, especially the use of three-neighborhood one-

dimensional cellular automata. In this article, the authors

investigate the impact of increasing the neighborhood size of CAs

on the security level and the cryptographic properties provided.

Thereafter, four-neighborhood one-dimensional CAs are studied

and a stream cipher algorithm is proposed. The security of the

proposed algorithm is demonstrated by using the results of

standard tests (i.e. NIST Test Suite and Dieharder Battery of

Tests), particularly by computing the cryptographic properties of

the used CAs and by showing the resistance of the suggested

algorithm to mostly known attacks.

Keywords—Stream ciphers; cellular automata; neighborhood

size; dieharder; NIST STS; cryptographic properties; attacks on

stream ciphers

I. INTRODUCTION

In stream ciphers design, fast encryption and simplicity are
particularly essential criteria. To get a ciphertext, a stream
cipher processes by applying the XOR operation to the
plaintext with the keystream. This latter is generated by a
PRNG that should provide good randomness and a good
security level. The strength of a stream cipher resides in the
robustness of the strength of the PRNG [1]. The outstanding
primitive recommended to use for the design of a PRNG is
Cellular Automaton.

Thanks to the simplicity producing the complex behaviour
of cellular automata (CA), especially the one-dimensional
3Neighborhood CAs which are widely used in the field of
cryptography. They were studied [2-4] to ensure a good
security level. However, some attacks are inevitable in

3Neighborhood configurations [4]. Accordingly, this article
presents two versions of Cellular Automata-based Stream
Cipher (3-CASC and 4-CASC). These versions were analysed
and investigated to identify differences between their
cryptographic properties and statistical analysis as well as
their resistance against attacks targeting stream ciphers.

The study of the 4Neighborhood 1-dimensional CA rules
is a challenging task. The authors chose the rules according to
the recommendations in [5] for the 3-CASC version. Then,
these rules are combined with a new variable to get the
4Neighborhood 1-dimensional CA rules. Section 2 details this
step. The N-CASC design, which was inspired by grain-like
CA-based ciphers, consists of three building blocks: a linear
block, a nonlinear block, and a mixing block. For the linear
block and nonlinear block, only linear rules and nonlinear
rules are used respectively. For the mixing block, a hybrid
ruleset with both linear and nonlinear rules is adopted.

The goal of the article is to look at the effect of
transitioning from the 3N version to the 4N version on the
cryptographic properties as well as the statistical features of
the stream cipher proposed.

The rest of this article is organized as follows:

Section II presents cellular automata and cryptographic
properties. Section III provides related works. Section IV
details the design of the proposed scheme. Section V displays
the results including the statistical test, the avalanche effect,
and the cryptographic properties. Section VI shows the
security analysis of the proposed scheme.

II. BACKGROUND

A. Cellular Automata

Cellular automata are dynamic systems that were first
introduced in the 1950s by John von Neumann and later
popularized by Stephen Wolfram in the 1980s [6]. They were
first studied for the modeling of biological self-reproduction
by von Neumann upon Stanislas Ulam recommendations [7].
Since then, they were used in different fields such as physics,
chemistry, mathematics, biology etc. … to model and solve
physical, natural and real-life problems [6]. Researchers took
interest in cellular automata because of the complex global
behavior that stems from simple interactions and computations
at the cellular level. Moreover, global properties such as

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

309 | P a g e

www.ijacsa.thesai.org

universality in computation and randomness explains the
attraction of the scientific community [8].

A cellular automaton is a finite set of n cells arranged as a
network that evolve in discrete space and time. Formally, a
cellular automaton is a tuple (L, S, N, f, R) [6], where:

 L is the d-dimensional cellular space.

 S is the finite state set.

 N is the neighborhood vector linking each cell to its
neighbors and represented by a radius r representing
the number of consecutive cells a cell depends on.

 f is the local update rule or simply the rule that gives
the next state of each cell.

 R is the rule vector consisting of the rule(s) applied to
each cell.

The L, S and N parameters can be varied to define different
types of CAs. For example, von Neumann studied 2-
dimensional, 5-neighborhood, 29-state cellular automata. If
the rule f is a linear Boolean function including only XOR
logic, then the CA is called a linear CA. Otherwise, if f
comprises also AND or OR logic, then the CA is called a non-
linear CA. The rule vector R can consist of a single rule
applied to all the cells (uniform CA) or a set of rules assigned
to each cell (hybrid CA).

Despite the fact that multi-dimension cellular automata can
display a more complex behavior, effectively characterizing
them and mathematically analyzing them is much difficult
than their 1-dimensional counterpart. This explains that much
of the studies conducted on cellular automata and their
application in cryptography has been done on 1-dimensional
cellular automata, particularly a special kind of cellular
automata introduced by Stephen Wolfram [2]. These cellular
automata are called Elementary Cellular Automata (ECA) [8].
They are 1-dimensional, 3Neighborhood and 2-state cellular
automata. For ECAs, there are 23 = 8 neighborhood

configurations and 223
= 256 total rules. Table I shows an

example of a linear and a non-linear rule.

In Table I, 𝑥𝑖−1, 𝑥𝑖and 𝑥𝑖+1are the left neighbor, the cell
and the right neighbor respectively. The rule name (e.g. Rule
120) is the decimal representation of the binary rule read from
left to right. This naming convention was introduced by
Wolfram [9].

For 4Neighborhood cellular automata, two possible
neighborhood arrangement are possible [5]:

 Left skewed: each cell (𝑥𝑖) depends on two left
neighbors (𝑥𝑖−2 and 𝑥𝑖−1) and one right (𝑥𝑖+1)
neighbors.

 Right skewed: each cell (𝑥𝑖) depends on one left
neighbors (𝑥𝑖−1) and two right (𝑥𝑖+1 and 𝑥𝑖+2)
neighbors.

For 1-dimensional, 2-state, 4Neghborhood cellular
automata, there are 24 = 16 neighborhood configurations and

224
= 65535 total rules. Table II shows an example of a linear

and a non-linear rule (left skewed).

One way to visualize the evolution of a cellular automaton
is to use a space/time diagram. In a space/time diagram the
cellular space lies on the x-axis, with different colors for each
state, while time is represented by the y-axis. Space/time
diagrams are a good tool to visualize the global behavior of a
cellular automaton and the rule(s) associated with it. Fig. 1
represents the space time diagram of rule 90 for a
configuration of 256 cells and 100 time steps
(https://www.wolframalpha.com/input/?i=rule+90).

TABLE I. EXAMPLES OF 1-DIMENSIONAL, 2-STATE, 4N EXAMPLE OF

ECA RULES

Neighborhood

configuration

Rule 120 (nonlinear)

𝑥𝑖−1 ⊕ 𝑥𝑖 ⋅ 𝑥𝑖+1

Rule 150 (linear)

𝑥𝑖−1 ⊕ 𝑥𝑖 ⊕ 𝑥𝑖+1

111 0 1

110 1 0

101 1 0

100 1 1

011 1 0

010 0 1

001 0 1

000 0 0

TABLE II. EGHBORHOOD RULES

Neighborhood

configuration

Rule 32640 (nonlinear)

𝑥𝑖−2 ⊕ 𝑥𝑖−1. 𝑥𝑖 . 𝑥𝑖+1

Rule 27030 (linear)

𝑥𝑖−2 ⊕ 𝑥𝑖−1 ⊕ 𝑥𝑖 ⊕ 𝑥𝑖+1

1111 0 0

1110 1 1

1101 1 1

1100 1 0

1011 1 1

1010 1 0

1001 1 0

1000 1 1

0111 1 1

0110 0 0

0101 0 0

0100 0 1

0011 0 0

0010 0 1

0001 0 1

0000 0 0

Fig. 1. Rule 90 Space Time Diagram.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

310 | P a g e

www.ijacsa.thesai.org

For practical reasons, cellular automata are studied for a
finite cellular space L. In this case, boundary conditions
should be specified. Two broad categories of boundary
conditions exist [6] for 1-dimensional cellular automata: open
boundary conditions and periodic conditions. For open
boundary conditions, the neighbors of the leftmost and
rightmost cells are fixed to one of the possible state values.
The most used open boundary condition is the null boundary
configuration [6]. For periodic boundary conditions, the
leftmost and rightmost cells are neighbors of each other.

B. Cryptographic Properties

In this section, some basic notions are defined and some
properties of Boolean functions are provided. Satisfying these
properties for cellular automata is a measure of their
cryptographic strength and a good indication for their
cryptographic suitability [10]. A more in-depth study of these
cryptographic properties can be found in [11].

1) Basic Definitions

a) Hamming weight: The Hamming weight, denoted

wt(f), of a Boolean function is the number of 1s found in its

truth table. A function has good hamming weight if wt(f)=2n-.1

b) Hamming distance: The Hamming distance, denoted

d(f,g), between two Boolean functions is the Hamming weight

of f ⊕ g.

2) Cryptographic Properties

a) Nonlinearity: The nonlinearity of an n-variable

Boolean function is defined as:

NL(f) = min{d (f,g) | g∈AF}

where AF is the set of all n-variable affine Boolean
functions. And NL(f) < 2n-1-2n/2-1.

b) Algebraic degree: The algebraic degree of an n-

variable Boolean function is defined as the number of

variables involved in the highest order term. It is bounded by

n-1.

c) Balancedness: An n-variable Boolean function f is

said to be balanced if wt(f) =2n-1.

d) Correlation Immunity: A Boolean function is mth

order correlation immune if its output is at most independent

from any combination of m input variables.

e) Resiliency: An m-resilient Boolean function is a

balanced mth order correlation immune function.

III. RELATED WORK

From the eSTREAM project, the LFSR/NFSR based Grain
[12] and the simple LFSR based Trivium [13] designs were
among the finalists designs that showed the most promising
features in terms of speed, simplicity and security. However,
since 2008 and the end of the eSTREAM project, many
attacks [15] targeted at Grain and Trivium families of ciphers
were mounted successfully. Those attacks, mainly fault
attacks and correlation attacks, induced fault in the LFSR or
the NFSR or exploit the dependence of the output and the
initialization vector (IV). Cellular automata proved to be good
cryptographic primitives due to their pseudo-randomness
property and their cryptographic properties. Therefore, they

were presented as good candidates to solve the problem of
attacks related to LFSR/NFSR based stream cipher designs.

In [2] and [3], Stephen Wolfram was the first to propose
the use of cellular automata as a keystream generator using
rule 30. However, the proposed design was later attacked by
Miere and Stafflebach in [4]. This attack, known as MS-attack,
exploits the high correlation of the nonlinear rule 30. The
majority of the subsequent proposals using cellular automata
as keystream generator are based on 1-dimensional,
3Neighborhood, 2-state cellular automata. Examples include
NOCAS in [16], CASTREAM in [17], CAvium in [18],
CAR30 in [19] and CASca in [20]. All these designs are
inspired by either Grain (NOCAS, CAR30 and CASca) or
Trivium (CASTREAM and Cavium). The idea behind these
designs is to replace LFSRs by hybrid linear cellular automata,
NFSRs by uniform or hybrid nonlinear cellular automata and
the filter function by the NMIX function [21] or a rotational
symmetric bent function. Attempts at higher neighborhood
radius can be found in [22] and [23] for 4Neigborhood and
[24] for 5-neighborhood. In these works, it is suggested that as
the neighborhood radius is increased, the randomness property
and the cryptographic properties of CAs are strengthened and
the resistance to fault, algebraic and correlation attacks is
increased. Few examples of multidimensional CAs used as
keystream generators are found in the literature. One such
example can be found in [25]. This can be explained by the
complexity of multidimensional CAs and the difficulty to
properly study them mathematically.

IV. PROPOSED STREAM CIPHER SCHEME

In this section, a detailed description of the system
proposed in this article is presented. As the purpose of the
article is to investigate the effect of increasing the
neighborhood of cellular automata from 3Neighborhood (3N)
to 4Neighborhood (4N) on the cryptographic properties and
the quality of cellular automata, both the 3N and 4N versions
of the system are presented here.

A. General Scheme

The general construction n-CASC (n-neighborhood one
dimensional Cellular Automata based Stream Cipher)
proposed in this article is a Grain-like stream cipher inspired
by the cellular automata based stream cipher FResCA [22].

1) Encryption scheme: The encryption scheme consists of

two phases: an initialization phase and an encryption phase.

Both these phases comprise the same three building blocks,

namely a nonlinear hybrid CA block, a linear hybrid CA block

and a hybrid CA mixing function block. Those two phases

along with the three building blocks are detailed below.

a) Initialization Phase: The initialization phase serves

the purpose of putting the system in a good initial state, before

starting the encryption phase, by running the three building

blocks mentioned above multiple times. This allows the

increase of the confusion properties and the cryptographic

properties provided by the use of cellular automata within

those building blocks.

The initialization phase starts with an initial 256-bit
configuration C0 at t0. C0 consists of a 128-bit key KEY and a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

311 | P a g e

www.ijacsa.thesai.org

128-bit initial vector IV. Both KEY and IV are generated
using the ThreadedSeedGenerator class of the Bouncy Castle
Java Crypto Library. C0 is fed to the system as follow:

 KEY is plugged as the starting configuration of the
nonlinear hybrid CA block.

 IV is plugged as the starting configuration of the linear
hybrid CA block.

The encryption phase, detailed in the next section, is then
run n times until reaching the configuration Cn that serves as
the initial configuration of the encryption phase. n, the number
of times the encryption scheme is run during the initialization
phase was the subject of a study. To determine a good n for
the system, a 100 KEY/IV pairs were generated and the
initialization phase was run for n=4, 8, 16, 32, 64 and 128.
The average of the avalanche effect between C0 and Cn was
computed. Table III summarizes the results of this study. As
shown in Table III, a good value for n is 64.

b) Encryption Phase: The initialization phase and

encryption phases share the same building blocks, namely:

 A nonlinear hybrid CA block. This block is used to
strengthen the system by the use of nonlinear-only
ruleset carefully chosen for its cryptographic
properties.

 A linear hybrid CA block. This block is used to extend
the period of the system by the use of a carefully
linear-only ruleset. The purpose of extending the
period of the system is to decrease the frequency of
going through a new initialization phase.

 A hybrid CA mixing function block. This block is used
to further the confusion property provided by the use of
CAs in the two other building blocks.

Fig. 2 and Fig. 3 show the initialization phase and the
encryption phase, respectively.

TABLE III. NUMBER OF ROUNDS DURING INITIALIZATION PHASE

Number of Rounds Average Avalanche Effect

4 48.80859

8 48.84375

16 48.89062

32 48.94141

64 49.01562

128 48.42187

Fig. 2. Initialization Phase.

Fig. 3. Encryption Phase.

As shown in Fig. 3, the keystream z resulting from the
combination of the three building blocks is then XORed with
the plaintext to obtain a ciphertext. A portion (32 bits) of z is
fed back to the system by XORing it to portions (32 bits) of
both the nonlinear hybrid CA (32 rightmost bits) and the linear
hybrid CA (32 leftmost bits) and injecting the results back in
those blocks.

c) Building blocks: The description that follows details

the building block of the encryption mechanism. The different

rulesets used for each of these building blocks will be given

for both the 3N and 4N versions, as it is the goal of the article

to investigate the effect of increasing the neighborhood size on

the strength and quality of the cellular automata properties.

The rulesets for 3N were carefully chosen following the
recommendations found in [4] and [26] and the selection
process outlined in [27]. For the 4N counterparts of these
rulesets, the following process was used to determine the best
candidates:

 First, for each rule of the 3N ruleset, all the similar 4N
left-skewed rules were determined.

 Then, the cryptographic properties of each of the
similar rules were computed and the best candidates
were chosen according to the nonlinearity, algebraic
degree, balancedness, correlation immunity and
resiliency in this order.

 Finally, the space-time diagrams of the best candidates
for each rule were compared to find the right fit.

1) Nonlinear Hybrid Ca

3N Version Case: The nonlinear hybrid CA block is a
cellular automaton with n = 128 cells. The ruleset R for this
cellular automaton is composed of only nonlinear rules. For
the 3N version, R = {30, 120, 180, 45, 30, 120, 180, 45}. The

cellular automaton is evolved
n

2
 = 64 time steps according to

the recommendations of Wolfram [14]. At t0, the cellular
automaton is filled with the 64 rightmost bits of Cn, the result
of the initialization phase (Cn,0 to Cn,63).

4N Version Case: The ruleset of the 4N version is R =
{43350, 38490, 25500, 22185, 43350, 38490, 25500, 22185}.
For the 4N version, the cellular automaton is evolved for
fewer time steps as the diffusion property of the cellular
automaton spreads more rapidly for 4Neighborhood cellular
automata compared to 3Neighborhood cellular automata. The

cellular automaton must evolve for
n

3
 43 time steps as

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

312 | P a g e

www.ijacsa.thesai.org

recommended in [23]. However, to compare 3N version with

4N,
n

2
 evolutions are performed.

2) Linear Hybrid CA

3N Version Case: The linear hybrid CA block is a cellular
automaton with n =128 cells. The ruleset R for this cellular
automaton is composed of only linear rules. For the 3N

version, R = {90, 150}. The cellular automaton is evolved
n

2
 =

64 time steps. At t0, the cellular automaton is filled with the
64 leftmost bits of Cn, the result of the initialization phase
(Cn,64 to Cn,127).

4N Version Case: The ruleset of the 4N version is R =

{24330, 27030}. The cellular automaton is evolved for
n

2
 = 64

time steps.

3) Hybrid CA Mixing Function

3N Version Case: The hybrid CA mixing function block is
a cellular automaton with n = 128 cells. The ruleset R for this
cellular automaton is composed of only nonlinear rules. For
the 3N version, R = {30, 60, 90, 120, 150, 180, 240, 15, 45}.

The cellular automaton is evolved
n

2
 = 64 time steps according

to the recommendations of Wolfram [14]. At t0, the cellular
automaton is filled with the 64 rightmost bits from the result
of the nonlinear hybrid CA block evolutions and the 64
leftmost bits from the result of the linear hybrid CA block
evolutions.

4N Version Case: The ruleset of the 4N version is R =
{43350, 49980, 42330, 38490, 27030, 25500, 65280, 255,
22185}. For the 4N version, the cellular automaton must
evolve for fewer time steps as the diffusion property of the
cellular automaton spreads more rapidly for 4Neighborhood
cellular automata compared to 3Neighborhood cellular
automata [23]. However the cellular automaton is evolved for
n

2
 = 64 time steps to be compared with the 3N version.

2) Decryption scheme: Since encryption and decryption

are the same functions, the decryption scheme is realized by

regenerating the same keystream z using the key KEY and the

initial vector IV.

B. Design Motivation

In this section, the motivation behind some of the design
criteria are presented.

1) Nonlinear Hybrid CA Block: The nonlinear hybrid CA

block with only nonlinear rules is used to strengthen the

system. The cryptographic robustness is provided by the

nonlinear rules, carefully chosen for their high cryptographic

properties such as the algebraic degree, nonlinearity and

balancedness. These cryptographic properties increase the

security of the system against attacks such as algebraic and

fault attacks [28].

2) Linear Hybrid CA Block: Due to the use of rules 90

and 150, shown to produce maximum cycle length in [16], the

linear hybrid CA block produces a maximum period.

3) Hybrid mixing function block: The mixing block is

used to combine the output from the linear and nonlinear

blocks. Its ruleset is made of both linear and nonlinear rules

with good cryptographic properties and maximal length cycle.

This block is used to further strengthen the system and

increase its period.

V. RESULTS

Several standard tests for evaluating the strength and
quality of stream ciphers were conducted. The results of those
tests are presented in this section.

A. Dieharder Battery of Tests

DIEHARDER battery of tests refers to a collection of
standard tests compiled by Brown, Eddelbuettel and Bauer.
The collection comprises tests written by Brown, Eddelbuettel
and Bauer as well as other tests designed by Marsaglia and
Tsang. It also includes some of the tests found in the NIST
Statistical Test Suite (NIST STS). Since 2013, this test suite
was updated multiple times, with each update comprising
more and more tests. It is considered a strong test suite to
assess the quality of random number generators and other
cryptographic primitives such as stream ciphers, block ciphers
and hash functions. For more information about this battery of
tests, refer to [29].

The latest version, used in this article, includes 31 tests.
The p-values, which are values ranging from 0 to 1, represent
the results of each of the 31 tests. In order for a
scheme/algorithm to pass a test, the p-value for that test
should be in the range [α, 1- α], where α represents the
significance level. α =0.005 is the significance level usually
considered.

Table IV shows the results of the DIEHARDER battery of
tests for both the 3N and 4N versions of CASC.

As can be seen from Table IV, both the versions pass all
the tests. This demonstrates the good statistical properties as
well as the randomness behavior and the indistinguishability
property of the keystreams generated by both versions of
CASC.

B. NIST Statistical Test Suite

The NIST Statistical Test Suite (NIST STS) is another
collection of statistical tests, developed by the National
Institute of Standards and Technology (NIST). It aims to test
the randomness property of cryptographic primitives such as
stream ciphers. It is used in this article to further show the
good statistical properties and randomness behavior of CASC.
For more details refer to the NIST special publication 800-22
[30].

As in the DIEHARDER battery of tests, a p-value is used
to measure if a primitive passes a test or not. The significance
level used is α=0.001.

The results of this test suite are shown in Table V for both
versions of CASC.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

313 | P a g e

www.ijacsa.thesai.org

TABLE IV. DIEHARDER BATTERY OF TESTS

Test Name
3N 4N

p-value Pass? p-value Pass?

Diehard birthdays 0.84247 PASS 0.52067 PASS

Diehard OPERM5 0.51995 PASS 0.98337 PASS

Diehard 32x32 Binary Rank 0.90033 PASS 0.54218 PASS

Diehard 6x8 Binary Rank 0.04878 PASS 0.63344 PASS

Diehard_bitstream 0.42121 PASS 0.69582 PASS

Diehard OPSO 0.00513 PASS 0.48370 PASS

Diehard OQSO 0.81708 PASS 0.24016 PASS

Diehard DNA 0.16796 PASS 0.38120 PASS

Diehard Count the 1s (stream) 0.35543 PASS 0.12572 PASS

Diehard Count the 1s (byte) 0.59953 PASS 0.56446 PASS

Diehard Parking Lot 0.17297 PASS 0.57621 PASS

Diehard Minimum Distance (2d

Circle)
0.99291 PASS 0.46500 PASS

Diehard 3d Sphere (Minimum

Distance)
0.43597 PASS 0.88116 PASS

Diehard Squeeze 0.17122 PASS 0.51642 PASS

Diehard Sums 0.14394 PASS 0.51966 PASS

Diehard Runs 0.82783 PASS 0.47367 PASS

Diehard Craps 0.72554 PASS 0.82186 PASS

Marsaglia and Tsang GCD 0.78445 PASS 0.82275 PASS

STS Monobit 0.13080 PASS 0.19039 PASS

STS Runs 0.02633 PASS 0.59340 PASS

STS Serial Test (Generalized) 0.41695 PASS 0.55628 PASS

RGB Bit Distribution 0.58773 PASS 0.56630 PASS

RGB Generalized Minimum

Distance
0.40435 PASS 0.63910 PASS

RGB Permutations 0.33968 PASS 0.48190 PASS

RGB Lagged Sum 0.55839 PASS 0.52245 PASS

RGB Kolmogorov-Smirnov 0.17476 PASS 0.57655 PASS

DAB Byte Distribution 0.49694 PASS 0.91177 PASS

DAB DCT (Frequency Analysis) 0.62319 PASS 0.58320 PASS

DAB Fill Tree 0.43359 PASS 0.76683 PASS

DAB Fill Tree 2 0.55191 PASS 0.44134 PASS

DAB Monobit 2 0.51141 PASS 0.94816 PASS

From Table V, it can be seen that both versions of CASC
pass all the applicable tests. This further confirms the good
statistical properties and the randomness behavior of both
versions of CASC.

C. Avalanche Effect Test

Another common test for cryptographic primitives, such as
stream ciphers, is the avalanche effect test.

This test was first introduced by Feistel in 1973[31] and
states that a small difference in the input (1 bit in general)
should translate into a substantial (around 50% in general)

difference in the output. This concept is closely related to non-
linearity. Formally, it can be formulated as follows:

f: {0,1}m → {0,1}n has the avalanche effect if:

∀ M, M’ ∈ {0,1}m : Hamming(M,M’)=1

⇒ average(Hamming(f(M), f(M’))=
𝑛

2

For CASC, the input is the initial 256-bit configuration C0
including the 128-bit parameters KEY and IV. Therefore, to
evaluate the avalanche effect for CASC, 100 different 256-bit
initial configuration C0 were generated (C0,0 to C0,99). For each
of these configurations, the keystream of the original
configuration C0,i and the keystreams of its one-bit change
replicas (Hamming(C0,i, C0,i,0≤j≤255’)=1, where j is the bit
changed) are computed. Then the hamming distance between
the keystreams are computed:

Hamming (f (C0,i),f (C0,i, 0≤j≤255’))

The results of this test for both the 3N and 4N versions of
CASC are presented in Fig. 4 and 5, respectively. The figures
show the average value for each bit changed.

TABLE V. NIST STS

Test Name
3N 4N

p-value Pass? p-value Pass?

The Frequency (Monobit)

Test
0.58369 PASS 0.50865 PASS

Frequency Test within a
Block

0.35048 PASS 0.45733 PASS

The Runs Test 0.49111 PASS 0.49209 PASS

Tests for the Longest-Run-

of-Ones in a Block
0.57416 PASS 0.47883 PASS

The Binary Matrix Rank Test 0.53414 PASS 0.73991 PASS

The Discrete Fourier
Transform (Spectral) Test

0.26486 PASS 0.48777 PASS

The Non-Overlapping

Template Matching Test
0.54250 PASS 0.53420 PASS

The Overlapping Template

Matching Test
0.28721 PASS 0.44916 PASS

Maurer’s “Universal
Statistical” Test

0.32383 PASS 0.32383 PASS

The Linear Complexity Test 0.53848 PASS 0.53414 PASS

The Serial p-value1 Test 0.34176 PASS 0.49896 PASS

The Serial p-value2 Test 0.91141 PASS 0.50188 PASS

The Approximate Entropy

Test
0.66914 PASS 0.57476 PASS

The Cumulative Sums
(Cusums) Forward Test

0.70265 PASS 0.65476 PASS

The Cumulative Sums
(Cusums) Reverse Test

0.36499 PASS 0.50865 PASS

The Random Excursions

Test
0.52242 PASS 0.42547 PASS

The Random Excursions
Variant Test

0.58369 PASS 0.44899 PASS

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

314 | P a g e

www.ijacsa.thesai.org

Fig. 4. Avalanche Effect Test Results for CASC 3N.

Fig. 5. Avalanche Effect Test Results for CASC 4N.

Fig. 4 and 5 show that for both versions the hamming
distances concentrate around 50%, with the 4N version
slightly showing better values. This shows that for both
versions of CASC are statistically independent from inputs.

D. Cryptographic Properties of CASC 3N and CASC 4N

In conjunction with the previous tests, another good
approach to measure the strength, statistical and randomness
properties as well as the confusion property of a cryptographic
primitive is to evaluate its cryptographic properties. In this
article, the following main cryptographic properties are
considered: algebraic degree, nonlinearity, balancedness,
correlation immunity and resiliency. Tables VI to XV
summarize these cryptographic properties for the nonlinear
block and the mixing function block of both versions of
CASC. The cryptographic properties are computed for eight
cells, assumed to be unknown Boolean values xi, and up to
three clock cycles for the nonlinear block and for nine cells,
assumed to be unknown Boolean values xi, and up to three
clock cycles for the mixing function block.

1) Nonlinear Block Cryptographic Properties

3N Ruleset: {30, 120, 180, 45, 30, 120, 180, 45}

4N Ruleset: {43350, 38490, 25500, 22185, 43350, 38490,
25500, 22185}

2) Mixing Function Block Cryptographic Properties

3N Ruleset: {30, 60, 90, 120, 150, 180, 240, 15, 45}

4N Ruleset: {43350, 49980, 42330, 38490, 27030, 25500,
65280, 255, 22185}

TABLE VI. NONLINEARITY

Iteration x1 x2 x3 x4 x5 x6 x7 x8

1
2 2 2 2 2 2 2 2 3N

4 4 4 4 4 4 4 4 4N

2
8 8 8 8 8 8 8 8 3N

32 56 48 48 48 56 48 48 4N

3
44 40 44 40 36 40 44 40 3N

464 432 432 448 440 440 448 400 4N

TABLE VII. ALGEBRAIC DEGREE

Iteration x1 x2 x3 x4 x5 x6 x7 x8

1
2 2 2 2 2 2 2 2 3N

2 2 2 2 2 2 2 2 4N

2

3

[1]
3 3 3 3 3 3 3 3N

3 3 4 3 4 3 4 3 4N

3
5 5 4 4 5 5 4 4 3N

5 5 6 5 5 5 6 5 4N

TABLE VIII. RESILIENCY

Iteration x1 x2 x3 x4 x5 x6 x7 x8

1
0 0 0 0 0 0 0 0 3N

1 1 1 1 1 1 1 1 4N

2
0 1 0 0 1 1 0 0 3N

1 1 0 0 1 1 0 0 4N

3
1 1 0 0 0 1 0 0 3N

0 -1 0 0 0 -1 -1 1 4N

TABLE IX. CORRELATION IMMUNITY

Iteration x1 x2 x3 x4 x5 x6 x7 x8

1
0 0 0 0 0 0 0 0 3N

1 1 1 1 1 1 1 1 4N

2
0 1 0 0 1 1 0 0 3N

1 1 0 0 1 1 0 0 4N

3
1 1 0 0 0 1 0 0 3N

0 0 0 0 0 0 0 1 4N

TABLE X. BALANCEDNESS

Iteration x1 x2 x3 x4 x5 x6 x7 x8

1
T T T T T T T T 3N

T T T T T T T T 4N

2
T T T T T T T T 3N

T T T T T T T T 4N

3
T T T T T T T T 3N

T F T T T F F T 4N

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

315 | P a g e

www.ijacsa.thesai.org

TABLE XI. NONLINEARITY

Iteratio

n
x1 x2 x3 x4 x5 x6 x7 x8 x9

1

2 0 0 2 0 2 0 0 2
3

N

4 0 0 4 0 4 0 0 4
4

N

2

8 8 8 8 12 8 8 0 8
3

N

32 32 48 32 48 48 0 32 48
4

N

3

32 32 48 48 48 32 32 32 32
3

N

38
4

25
6

38
4

44
8

44
8

38
4

38
4

38
4

38
4

4
N

TABLE XII. ALGEBRAIC DEGREE

Iteration x1 x2 x3 x4 x5 x6 x7 x8 x9

1
2 1 1 2 1 2 1 1 2 3N

2 1 1 2 1 2 1 1 2 4N

2
2 2 2 3 2 2 2 1 3 3N

3 2 2 3 2 2 1 2 3 4N

3
3 2 3 4 3 3 2 2 4 3N

4 3 3 5 3 3 2 2 5 4N

TABLE XIII. RESILIENCY

Iteration x1 x2 x3 x4 x5 x6 x7 x8 x9

1
0 1 1 0 2 0 0 0 0 3N

1 2 2 1 3 1 0 0 1 4N

2
2 0 2 1 0 0 0 0 0 3N

1 2 2 2 0 -1 3 1 3 4N

3
1 0 1 0 2 0 0 0 0 3N

0 1 2 2 0 -1 0 -1 1 4N

TABLE XIV. CORRELATION IMMUNITY

Iteration x1 x2 x3 x4 x5 x6 x7 x8 x9

1
0 1 1 0 2 0 0 0 0 3N

1 2 2 1 3 1 0 0 1 4N

2
2 0 2 1 0 0 0 0 0 3N

1 2 2 2 0 0 3 1 3 4N

3
1 0 1 0 2 0 0 0 0 3N

0 1 2 2 0 0 0 0 1 4N

TABLE XV. BALANCEDNESS

Iteration x1 x2 x3 x4 x5 x6 x7 x8 x9

1
T T T T T T T T T 3N

T T T T T T T T T 4N

2
T T T T T T T T T 3N

T T T T T F T T T 4N

3
T T T T T T T T T 3N

T T T T T F T F T 4N

From these tables, it can be noted that, with the exception
of correlation immunity and resiliency, the nonlinearity and
the algebraic degree increase with each iteration or remain
true in the case of balancedness for both 3N and 4N. The
decrease of the values of correlation immunity and resiliency
can be explained by the fact that these properties are in
contradiction with the three others (nonlinearity, algebraic
degree and balancedness) [4]. Therefore, a compromise should
be found. For a stream cipher, the algebraic degree and the
nonlinearity can be judged as more important properties to
achieve than the correlation immunity and resiliency
properties. Moreover, it can be noted that for these two
properties (nonlinearity and algebraic degree), the 4N version
of CASC displays better properties than the 3N version. This
confirms the general tendency that going from 3N to 4N
improves the statistical properties as well as the cryptographic
properties of the stream cipher scheme presented here.

VI. SECURITY ANALYSIS

As the main criterion for a stream cipher is to resist all
known attacks, a security analysis is conducted in this section.
Resisting an attack means that the computational complexity
of that attack is no less than that of an exhaustive key search
attack which is O(2n).

This section covers some of the major known attacks
against stream ciphers and the countermeasures used in the
design of CASCA are pointed out.

A. Side Channel Attacks

Side channel attacks [32] are a class of attacks targeted at
the hardware implementation of ciphers. By analyzing
different physical characteristics, such as power consumption,
noise or heat dissipation, during the execution time, these
attacks try to recover the internal state of the keystream
generator in the case of stream ciphers. In the case of the
stream cipher presented in this article, the complexity of this
kind of attacks is higher due to the use of a linear block, a
nonlinear block and a mixing function block based on cellular
automata that make the cipher quite difficult to reverse.

A. Time/Memory/Data Tradeoff Attack

In the time/memory/data tradeoff attack [32] the goal of
the attacker is to lower the complexity of the exhaustive key
search attack by establishing a lookup table of pairs of
key/keystream during the offline phase and observing the
keystreams generated by unknown keys during the online
phase and trying to find matches.

The complexity of this attacks is O(2n/2), where n is the
inner state of the stream cipher. In the case of CASCA, n =
256 bits. Therefore, this attack is difficult to achieve.

B. Algebraic Attacks

In this type of attacks, the cryptographic system studied is
modelled using algebraic equations. This is performed by first
identifying an algebraic equation set relating the first
configuration C0 with the generated keystream. The maximum
number of keystream bits is collected to construct the
equations system. By solving this system, the initial
configuration and consequently the secret key are recovered.
To prevent this type of attacks, the algebraic degree and the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

316 | P a g e

www.ijacsa.thesai.org

nonlinearity of the functions used in the keystream generation
mechanism must be as high as possible [32].

From Tables VII and XII, it is clear that the algebraic
degree and nonlinearity increase with each iteration. The
number of cycles used is the recommended one in terms of the
neighborhood size. These results make the system robust
against this type of attacks.

C. Linear Approximation Attacks

The linear cryptanalysis technique is a known plaintext
attack designed by Matsui to break DES encryption scheme
[33]. This technique aims to find a linear approximation of a
symmetric system’s behavior from a number of plaintext bits
and ciphertext bits in relation to the key bits.

To prevent this type of attacks, the nonlinear and the
mixing blocks are useful to decrease the probability to find
such an approximation. From Tables VII and XII, it is clear
that the algebraic degree and nonlinearity increase with each
iteration and thus make this kind of attacks difficult to realize.

D. Correlation Attacks

In 1985, Siegenthaler [34] proposed a known plaintext
attack called the correlation attack which aims to recover the
initial configuration of the internal state by using some known
keystream bits.

High nonlinearity, balancedness, resiliency and correlation
immunity are good countermeasures to avoid this kind of
attack. As shown by the tables summarizing the cryptographic
properties of CASCA 3N and 4N, the stream cipher presented
in this article is quite robust against correlations attacks.

E. Fault Attacks

In fault attacks [23], faults are injected and the difference
between ciphertexts containing faults and original ciphertexts
without faults is exploited to recover the key. In the case of
CASCA, the tracking of the faults is made difficult due to the
high diffusion property of cellular automata used in the
building blocks.

VII. CONCLUSION

In this article, a new stream cipher scheme (N-CASC) was
presented. It is a grain-like stream cipher based on cellular
automata comprising three building blocks: a linear block, a
nonlinear block, and a mixing function block. The article
details the internal functioning of the mechanism and provides
a comparison of its 3N and 4N versions. The comparison,
which is based on the statistical tests (Diharder and NIST
STS) as well as the cryptographic properties and the security
analysis, serves the purpose of outlining the advantages and
disadvantages of each version. The 4N version presents better
statistical results and displays a better nonlinearity and a
higher algebraic degree than the 3N version. However, the 3N
version shows better results regarding the correlation
immunity and resiliency properties.

Based on the findings of the present paper, a new design
can be proposed, in the future, combining building blocks of
3Neighborhood cellular automata and 4Neighborhood cellular
automata taking advantage of the features of each of the
configurations for better levels of security and higher levels of

randomness. Another future prospect might be the
investigation of higher neighborhood configurations (5-
neighborhood cellular automata for example) and higher
dimensions (2D and 3D).

REFERENCES

[1] A. Klein, Stream Ciphers. Springer, 2013

[2] S. Wolfram, “Cryptography with Cellular Automata,” Lecture Notes in
Computer Science Advances in Cryptology — CRYPTO ’85
Proceedings, pp. 429–432, 1985.

[3] S. Wolfram, “Random sequence generation by cellular automata,”
Advances in Applied Mathematics, vol. 7, no. 2, pp. 123–169, 1986.

[4] W. Meier and O. Staffelbach, “Analysis of Pseudo Random Sequences
Generated by Cellular Automata,” Advances in Cryptology –
EUROCRYPT ’91 Lecture Notes in Computer Science, pp. 186–199,
1991.

[5] K. Chakraborty and D. R. Chowdhury, “CSHR: Selection of
Cryptographically Suitable Hybrid Cellular Automata Rule,” Lecture
Notes in Computer Science Cellular Automata, pp. 591–600, 2012.

[6] K. Bhattacharjee, N. Naskar, S. Roy, and S. Das, “A survey of cellular
automata: types, dynamics, non-uniformity and applications,” Natural
Computing, 2018..

[7] J. T. Schwartz, J. V. Neumann, and A. W. Burks, “Theory of Self-
Reproducing Automata,” Mathematics of Computation, vol. 21, no. 100,
p. 745, 1967

[8] D. Mukhopadhyay and A. Kundu, “Preliminaries on Cellular
Automata,” Web Searching and Mining Cognitive Intelligence and
Robotics, pp. 29–35, 2018.

[9] S. Wolfram, “Universality and complexity in cellular automata,”
Physica D: Nonlinear Phenomena, vol. 10, no. 1-2, pp. 1–35, 1984

[10] T. W. Cusick, Cryptographic Boolean functions and applications.
London: Academic Press, 2017.

[11] C.K. Wu and D. Feng , Boolean functions and their applications in
cryptography. Place of publication not identified: SPRINGER, 2016.

[12] M. Hell, T. Johansson, A. Maximov, and W. Meier, “A Stream Cipher
Proposal: Grain-128,” 2006 IEEE International Symposium on
Information Theory, 2006.

[13] C. D. Cannière, “Trivium: A Stream Cipher Construction Inspired by
Block Cipher Design Principles,” Lecture Notes in Computer Science
Information Security, pp. 171–186, 2006

[14] S. Wolfram, A new kind of science. Champaign: Wolfram Media, 2002

[15] C. Manifavas, G. Hatzivasilis, K. Fysarakis, and Y. Papaefstathiou, “A
survey of lightweight stream ciphers for embedded systems,” Security
and Communication Networks, vol. 9, no. 10, pp. 1226–1246, 2015

[16] S. Karmakar and D. R. Chowdhury, “NOCAS : A Nonlinear Cellular
Automata Based Stream Cipher,” Discrete Mathematics and Theoretical
Computer Science, pp. 135–146, 2012.

[17] S. Das and D. R. Chowdhury, “CASTREAM: A New Stream Cipher
Suitable for Both Hardware and Software,” Lecture Notes in Computer
Science Cellular Automata, pp. 601–610, 2012.

[18] S. Karmakar, D. Mukhopadhyay, and D. R. Chowdhury, “CAvium -
Strengthening Trivium stream cipher using Cellular Automata,” Journal
of cellular automata , vol. 7, no. 2, Jan. 2012.

[19] S. Das and D. Roychowdhury, “CAR30: A new scalable stream cipher
with rule 30,” Cryptography and Communications, vol. 5, no. 2, pp.
137–162, Jul. 2013.

[20] S. Ghosh and D. R. Chowdhury, “CASca:A CA Based Scalable Stream
Cipher,” Mathematics and Computing Springer Proceedings in
Mathematics & Statistics, pp. 95–105, 2015.

[21] J. Bhaumik and D. R. Chowdhury, “Nmix: An Ideal Candidate For Key
Mixing,” Proceedings of the International Conference on Security and
Cryptography, 2009.

[22] J. Jose and D. R. Chowdhury, “FResCA: A Fault-Resistant Cellular
Automata Based Stream Cipher,” Lecture Notes in Computer Science
Cellular Automata, pp. 24–33, 2016.

[23] J. Jose and D. R. Chowdhury, “Investigating four neighbourhood
cellular automata as better cryptographic primitives,” Journal of Discrete

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

317 | P a g e

www.ijacsa.thesai.org

Mathematical Sciences and Cryptography, vol. 20, no. 8, pp. 1675–
1695, 2017.

[24] R. Lakra, A. John, and J. Jose, “CARPenter: A Cellular Automata Based
Resilient Pentavalent Stream Cipher,” Developments in Language
Theory Lecture Notes in Computer Science, pp. 352–363, 2018.

[25] M. Perrenoud, M. Sipper, and M. Tomassini, “On the generation of
high-quality random numbers by two-dimensional cellular automata,”
IEEE Transactions on Computers, vol. 49, no. 10, pp. 1146–1151, 2000.

[26] S. Karmakar, D. Mukhopadhyay, and D. R. Chowdhury, “d-Monomial
Tests of Nonlinear Cellular Automata for Cryptographic Design,”
Lecture Notes in Computer Science Cellular Automata, pp. 261–270,
2010.

[27] A. Sadak, F. E. Ziani, B. Echandouri, C. Hanin, and F. Omary,
“HCAHF: A New Family of CA-based Hash Functions,” International
Journal of Advanced Computer Science and Applications, vol. 10, no.
12, 2019.

[28] S. Maiti, S. Ghosh, and D. R. Chowdhury, “On the Security of
Designing a Cellular Automata Based Stream Cipher,” Information
Security and Privacy Lecture Notes in Computer Science, pp. 406–413,
2017.

[29] Robert G. Brown's General Tools Page. [Online]. Available:
https://phy.duke.edu/~rgb/General/dieharder.php. [Accessed: 16-Mar-
2020].

[30] A. L. Rukhin, A statistical test suite for random and pseudorandom
number generators for cryptographic applications. Gaithersburg, MD:
U.S. Dept. of Commerce, Technology Administration, National Institute
of Standards and Technology, 2000.

[31] H. Feistel, “Cryptography and Computer Privacy,” Scientific American,
vol. 228, no. 5, pp. 15–23, 1973.

[32] M. U.bokhari, S. Alam, and F. S. Masoodi, “Cryptanalysis Techniques
for Stream Cipher: A Survey,” International Journal of Computer
Applications, vol. 60, no. 9, pp. 29–33, 2012.

[33] M. Matsui, “Linear Cryptanalysis Method for DES Cipher,” Advances
in Cryptology — EUROCRYPT ’93 Lecture Notes in Computer
Science, pp. 386–397, 1994.

[34] T. Siegenthaler, “Decrypting a Class of Stream Ciphers Using
Ciphertext Only,” IEEE Transactions on Computers, vol. C-34, no. 1,
pp. 81–85, 1985.

