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Abstract—Stream ciphers are symmetric cryptosystems that 

rely on pseudorandom number generators (PRNGs) as a primary 

building block to generate a keystream. Stream ciphers have 

been extensively studied and many designs were proposed 

throughout the years. One of the popular designs used is the 

combination of linear feedback shift registers (LFSRs) and 

nonlinear feedback shift registers (NFSRs). Although this design 

is suitable for both software and hardware implementation and 

provides a good randomness behavior, it is still subject to attacks 

such as fault attacks and correlations attacks. Cellular automata 

(CAs) based stream ciphers are another design class that has 

been proposed. CAs display good cryptographic properties as 

well as a good randomness behavior, also high computational 

speed and a higher level of security. The use of CAs as 

cryptographic primitives is not recent and has been thoroughly 

investigated, especially the use of three-neighborhood one-

dimensional cellular automata. In this article, the authors 

investigate the impact of increasing the neighborhood size of CAs 

on the security level and the cryptographic properties provided. 

Thereafter, four-neighborhood one-dimensional CAs are studied 

and a stream cipher algorithm is proposed. The security of the 

proposed algorithm is demonstrated by using the results of 

standard tests (i.e. NIST Test Suite and Dieharder Battery of 

Tests), particularly by computing the cryptographic properties of 

the used CAs and by showing the resistance of the suggested 

algorithm to mostly known attacks. 

Keywords—Stream ciphers; cellular automata; neighborhood 
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I. INTRODUCTION 

In stream ciphers design, fast encryption and simplicity are 
particularly essential criteria. To get a ciphertext, a stream 
cipher processes by applying the XOR operation to the 
plaintext with the keystream. This latter is generated by a 
PRNG that should provide good randomness and a good 
security level. The strength of a stream cipher resides in the 
robustness of the strength of the PRNG [1]. The outstanding 
primitive recommended to use for the design of a PRNG is 
Cellular Automaton. 

Thanks to the simplicity producing the complex behaviour 
of cellular automata (CA), especially the one-dimensional 
3Neighborhood CAs which are widely used in the field of 
cryptography. They were studied [2-4] to ensure a good 
security level. However, some attacks are inevitable in 

3Neighborhood configurations [4]. Accordingly, this article 
presents two versions of Cellular Automata-based Stream 
Cipher (3-CASC and 4-CASC). These versions were analysed 
and investigated to identify differences between their 
cryptographic properties and statistical analysis as well as 
their resistance against attacks targeting stream ciphers. 

The study of the 4Neighborhood 1-dimensional CA rules 
is a challenging task. The authors chose the rules according to 
the recommendations in [5] for the 3-CASC version. Then, 
these rules are combined with a new variable to get the 
4Neighborhood 1-dimensional CA rules. Section 2 details this 
step. The N-CASC design, which was inspired by grain-like 
CA-based ciphers, consists of three building blocks: a linear 
block, a nonlinear block, and a mixing block. For the linear 
block and nonlinear block, only linear rules and nonlinear 
rules are used respectively. For the mixing block, a hybrid 
ruleset with both linear and nonlinear rules is adopted. 

The goal of the article is to look at the effect of 
transitioning from the 3N version to the 4N version on the 
cryptographic properties as well as the statistical features of 
the stream cipher proposed. 

The rest of this article is organized as follows: 

Section II presents cellular automata and cryptographic 
properties. Section III provides related works. Section IV 
details the design of the proposed scheme. Section V displays 
the results including the statistical test, the avalanche effect, 
and the cryptographic properties. Section VI shows the 
security analysis of the proposed scheme. 

II. BACKGROUND 

A. Cellular Automata 

Cellular automata are dynamic systems that were first 
introduced in the 1950s by John von Neumann and later 
popularized by Stephen Wolfram in the 1980s [6]. They were 
first studied for the modeling of biological self-reproduction 
by von Neumann upon Stanislas Ulam recommendations [7]. 
Since then, they were used in different fields such as physics, 
chemistry, mathematics, biology etc. … to model and solve 
physical, natural and real-life problems [6]. Researchers took 
interest in cellular automata because of the complex global 
behavior that stems from simple interactions and computations 
at the cellular level. Moreover, global properties such as 
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universality in computation and randomness explains the 
attraction of the scientific community [8]. 

A cellular automaton is a finite set of n cells arranged as a 
network that evolve in discrete space and time. Formally, a 
cellular automaton is a tuple (L, S, N, f, R) [6], where: 

 L is the d-dimensional cellular space. 

 S is the finite state set. 

 N is the neighborhood vector linking each cell to its 
neighbors and represented by a radius r representing 
the number of consecutive cells a cell depends on. 

 f is the local update rule or simply the rule that gives 
the next state of each cell. 

 R is the rule vector consisting of the rule(s) applied to 
each cell. 

The L, S and N parameters can be varied to define different 
types of CAs. For example, von Neumann studied 2-
dimensional, 5-neighborhood, 29-state cellular automata. If 
the rule f is a linear Boolean function including only XOR 
logic, then the CA is called a linear CA. Otherwise, if f 
comprises also AND or OR logic, then the CA is called a non-
linear CA. The rule vector R can consist of a single rule 
applied to all the cells (uniform CA) or a set of rules assigned 
to each cell (hybrid CA). 

Despite the fact that multi-dimension cellular automata can 
display a more complex behavior, effectively characterizing 
them and mathematically analyzing them is much difficult 
than their 1-dimensional counterpart. This explains that much 
of the studies conducted on cellular automata and their 
application in cryptography has been done on 1-dimensional 
cellular automata, particularly a special kind of cellular 
automata introduced by Stephen Wolfram [2]. These cellular 
automata are called Elementary Cellular Automata (ECA) [8]. 
They are 1-dimensional, 3Neighborhood and 2-state cellular 
automata. For ECAs, there are 23 = 8 neighborhood 

configurations and 223
= 256 total rules. Table I shows an 

example of a linear and a non-linear rule. 

In Table I, 𝑥𝑖−1, 𝑥𝑖and 𝑥𝑖+1are the left neighbor, the cell 
and the right neighbor respectively. The rule name (e.g. Rule 
120) is the decimal representation of the binary rule read from 
left to right. This naming convention was introduced by 
Wolfram [9]. 

For 4Neighborhood cellular automata, two possible 
neighborhood arrangement are possible [5]: 

 Left skewed: each cell ( 𝑥𝑖 ) depends on two left 
neighbors ( 𝑥𝑖−2  and 𝑥𝑖−1 ) and one right ( 𝑥𝑖+1 ) 
neighbors. 

 Right skewed: each cell ( 𝑥𝑖 ) depends on one left 
neighbors ( 𝑥𝑖−1 ) and two right ( 𝑥𝑖+1  and 𝑥𝑖+2 ) 
neighbors. 

For 1-dimensional, 2-state, 4Neghborhood cellular 
automata, there are 24 = 16 neighborhood configurations and 

224
= 65535 total rules. Table II shows an example of a linear 

and a non-linear rule (left skewed). 

One way to visualize the evolution of a cellular automaton 
is to use a space/time diagram. In a space/time diagram the 
cellular space lies on the x-axis, with different colors for each 
state, while time is represented by the y-axis. Space/time 
diagrams are a good tool to visualize the global behavior of a 
cellular automaton and the rule(s) associated with it. Fig. 1 
represents the space time diagram of rule 90 for a 
configuration of 256 cells and 100 time steps 
(https://www.wolframalpha.com/input/?i=rule+90). 

TABLE I. EXAMPLES OF 1-DIMENSIONAL, 2-STATE, 4N EXAMPLE OF 

ECA RULES 

Neighborhood 

configuration 

Rule 120 (nonlinear) 

𝑥𝑖−1 ⊕ 𝑥𝑖 ⋅ 𝑥𝑖+1 

Rule 150 (linear) 

𝑥𝑖−1 ⊕ 𝑥𝑖 ⊕ 𝑥𝑖+1 

111 0 1 

110 1 0 

101 1 0 

100 1 1 

011 1 0 

010 0 1 

001 0 1 

000 0 0 

TABLE II. EGHBORHOOD RULES 

Neighborhood 

configuration 

Rule 32640 (nonlinear) 

𝑥𝑖−2 ⊕ 𝑥𝑖−1. 𝑥𝑖 . 𝑥𝑖+1 

Rule 27030 (linear) 

𝑥𝑖−2 ⊕ 𝑥𝑖−1 ⊕ 𝑥𝑖 ⊕ 𝑥𝑖+1 

1111 0 0 

1110 1 1 

1101 1 1 

1100 1 0 

1011 1 1 

1010 1 0 

1001 1 0 

1000 1 1 

0111 1 1 

0110 0 0 

0101 0 0 

0100 0 1 

0011 0 0 

0010 0 1 

0001 0 1 

0000 0 0 

 

Fig. 1. Rule 90 Space Time Diagram. 
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For practical reasons, cellular automata are studied for a 
finite cellular space L. In this case, boundary conditions 
should be specified. Two broad categories of boundary 
conditions exist [6] for 1-dimensional cellular automata: open 
boundary conditions and periodic conditions. For open 
boundary conditions, the neighbors of the leftmost and 
rightmost cells are fixed to one of the possible state values. 
The most used open boundary condition is the null boundary 
configuration [6]. For periodic boundary conditions, the 
leftmost and rightmost cells are neighbors of each other. 

B. Cryptographic Properties 

In this section, some basic notions are defined and some 
properties of Boolean functions are provided. Satisfying these 
properties for cellular automata is a measure of their 
cryptographic strength and a good indication for their 
cryptographic suitability [10]. A more in-depth study of these 
cryptographic properties can be found in [11]. 

1) Basic Definitions 

a) Hamming weight: The Hamming weight, denoted 

wt(f), of a Boolean function is the number of 1s found in its 

truth table. A function has good hamming weight if wt(f)=2n-.1 

b) Hamming distance: The Hamming distance, denoted 

d(f,g), between two Boolean functions is the Hamming weight 

of f ⊕ g. 

2) Cryptographic Properties 

a) Nonlinearity: The nonlinearity of an n-variable 

Boolean function is defined as: 

NL(f) = min{d (f,g) | g∈AF} 

where AF is the set of all n-variable affine Boolean 
functions. And NL(f) < 2n-1-2n/2-1. 

b) Algebraic degree: The algebraic degree of an n-

variable Boolean function is defined as the number of 

variables involved in the highest order term. It is bounded by 

n-1. 

c) Balancedness: An n-variable Boolean function f is 

said to be balanced if wt(f) =2n-1. 

d) Correlation Immunity: A Boolean function is mth 

order correlation immune if its output is at most independent 

from any combination of m input variables. 

e) Resiliency: An m-resilient Boolean function is a 

balanced mth order correlation immune function. 

III. RELATED WORK 

From the eSTREAM project, the LFSR/NFSR based Grain 
[12] and the simple LFSR based Trivium [13] designs were 
among the finalists designs that showed the most promising 
features in terms of speed, simplicity and security. However, 
since 2008 and the end of the eSTREAM project, many 
attacks [15] targeted at Grain and Trivium families of ciphers 
were mounted successfully. Those attacks, mainly fault 
attacks and correlation attacks, induced fault in the LFSR or 
the NFSR or exploit the dependence of the output and the 
initialization vector (IV). Cellular automata proved to be good 
cryptographic primitives due to their pseudo-randomness 
property and their cryptographic properties. Therefore, they 

were presented as good candidates to solve the problem of 
attacks related to LFSR/NFSR based stream cipher designs. 

In [2] and [3], Stephen Wolfram was the first to propose 
the use of cellular automata as a keystream generator using 
rule 30. However, the proposed design was later attacked by 
Miere and Stafflebach in [4]. This attack, known as MS-attack, 
exploits the high correlation of the nonlinear rule 30. The 
majority of the subsequent proposals using cellular automata 
as keystream generator are based on 1-dimensional, 
3Neighborhood, 2-state cellular automata. Examples include 
NOCAS in [16], CASTREAM in [17], CAvium in [18], 
CAR30 in [19] and CASca in [20]. All these designs are 
inspired by either Grain (NOCAS, CAR30 and CASca) or 
Trivium (CASTREAM and Cavium). The idea behind these 
designs is to replace LFSRs by hybrid linear cellular automata, 
NFSRs by uniform or hybrid nonlinear cellular automata and 
the filter function by the NMIX function [21] or a rotational 
symmetric bent function. Attempts at higher neighborhood 
radius can be found in [22] and [23] for 4Neigborhood and 
[24] for 5-neighborhood. In these works, it is suggested that as 
the neighborhood radius is increased, the randomness property 
and the cryptographic properties of CAs are strengthened and 
the resistance to fault, algebraic and correlation attacks is 
increased. Few examples of multidimensional CAs used as 
keystream generators are found in the literature. One such 
example can be found in [25]. This can be explained by the 
complexity of multidimensional CAs and the difficulty to 
properly study them mathematically. 

IV. PROPOSED STREAM CIPHER SCHEME 

In this section, a detailed description of the system 
proposed in this article is presented. As the purpose of the 
article is to investigate the effect of increasing the 
neighborhood of cellular automata from 3Neighborhood (3N) 
to 4Neighborhood (4N) on the cryptographic properties and 
the quality of cellular automata, both the 3N and 4N versions 
of the system are presented here. 

A. General Scheme 

The general construction n-CASC (n-neighborhood one 
dimensional Cellular Automata based Stream Cipher) 
proposed in this article is a Grain-like stream cipher inspired 
by the cellular automata based stream cipher FResCA [22]. 

1) Encryption scheme: The encryption scheme consists of 

two phases: an initialization phase and an encryption phase. 

Both these phases comprise the same three building blocks, 

namely a nonlinear hybrid CA block, a linear hybrid CA block 

and a hybrid CA mixing function block. Those two phases 

along with the three building blocks are detailed below. 

a) Initialization Phase: The initialization phase serves 

the purpose of putting the system in a good initial state, before 

starting the encryption phase, by running the three building 

blocks mentioned above multiple times. This allows the 

increase of the confusion properties and the cryptographic 

properties provided by the use of cellular automata within 

those building blocks. 

The initialization phase starts with an initial 256-bit 
configuration C0 at t0. C0 consists of a 128-bit key KEY and a 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 4, 2020 

311 | P a g e  

www.ijacsa.thesai.org 

128-bit initial vector IV. Both KEY and IV are generated 
using the ThreadedSeedGenerator class of the Bouncy Castle 
Java Crypto Library. C0 is fed to the system as follow: 

 KEY is plugged as the starting configuration of the 
nonlinear hybrid CA block. 

 IV is plugged as the starting configuration of the linear 
hybrid CA block. 

The encryption phase, detailed in the next section, is then 
run n times until reaching the configuration Cn that serves as 
the initial configuration of the encryption phase. n, the number 
of times the encryption scheme is run during the initialization 
phase was the subject of a study. To determine a good n for 
the system, a 100 KEY/IV pairs were generated and the 
initialization phase was run for n=4, 8, 16, 32, 64 and 128. 
The average of the avalanche effect between C0 and Cn was 
computed. Table III summarizes the results of this study. As 
shown in Table III, a good value for n is 64. 

b) Encryption Phase: The initialization phase and 

encryption phases share the same building blocks, namely: 

 A nonlinear hybrid CA block. This block is used to 
strengthen the system by the use of nonlinear-only 
ruleset carefully chosen for its cryptographic 
properties. 

 A linear hybrid CA block. This block is used to extend 
the period of the system by the use of a carefully 
linear-only ruleset. The purpose of extending the 
period of the system is to decrease the frequency of 
going through a new initialization phase. 

 A hybrid CA mixing function block. This block is used 
to further the confusion property provided by the use of 
CAs in the two other building blocks. 

Fig. 2 and Fig. 3 show the initialization phase and the 
encryption phase, respectively. 

TABLE III. NUMBER OF ROUNDS DURING INITIALIZATION PHASE 

Number of Rounds Average Avalanche Effect 

4 48.80859 

8 48.84375 

16 48.89062 

32 48.94141 

64 49.01562 

128 48.42187 

 

Fig. 2. Initialization Phase. 

 

Fig. 3. Encryption Phase. 

As shown in Fig. 3, the keystream z resulting from the 
combination of the three building blocks is then XORed with 
the plaintext to obtain a ciphertext. A portion (32 bits) of z is 
fed back to the system by XORing it to portions (32 bits) of 
both the nonlinear hybrid CA (32 rightmost bits) and the linear 
hybrid CA (32 leftmost bits) and injecting the results back in 
those blocks. 

c) Building blocks: The description that follows details 

the building block of the encryption mechanism. The different 

rulesets used for each of these building blocks will be given 

for both the 3N and 4N versions, as it is the goal of the article 

to investigate the effect of increasing the neighborhood size on 

the strength and quality of the cellular automata properties. 

The rulesets for 3N were carefully chosen following the 
recommendations found in [4] and [26] and the selection 
process outlined in [27]. For the 4N counterparts of these 
rulesets, the following process was used to determine the best 
candidates: 

 First, for each rule of the 3N ruleset, all the similar 4N 
left-skewed rules were determined. 

 Then, the cryptographic properties of each of the 
similar rules were computed and the best candidates 
were chosen according to the nonlinearity, algebraic 
degree, balancedness, correlation immunity and 
resiliency in this order. 

 Finally, the space-time diagrams of the best candidates 
for each rule were compared to find the right fit. 

1) Nonlinear Hybrid Ca 

3N Version Case: The nonlinear hybrid CA block is a 
cellular automaton with n = 128 cells. The ruleset R for this 
cellular automaton is composed of only nonlinear rules. For 
the 3N version, R = {30, 120, 180, 45, 30, 120, 180, 45}. The 

cellular automaton is evolved 
n

2
 = 64 time steps according to 

the recommendations of Wolfram [14]. At t0, the cellular 
automaton is filled with the 64 rightmost bits of Cn, the result 
of the initialization phase (Cn,0 to Cn,63). 

4N Version Case: The ruleset of the 4N version is R = 
{43350, 38490, 25500, 22185, 43350, 38490, 25500, 22185}. 
For the 4N version, the cellular automaton is evolved for 
fewer time steps as the diffusion property of the cellular 
automaton spreads more rapidly for 4Neighborhood cellular 
automata compared to 3Neighborhood cellular automata. The 

cellular automaton must evolve for 
n

3
  43 time steps as 
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recommended in [23]. However, to compare 3N version with 

4N, 
n

2
 evolutions are performed. 

2) Linear Hybrid CA 

3N Version Case: The linear hybrid CA block is a cellular 
automaton with n =128 cells. The ruleset R for this cellular 
automaton is composed of only linear rules. For the 3N 

version, R = {90, 150}. The cellular automaton is evolved 
n

2
 = 

64 time steps. At t0, the cellular automaton is filled with the 
64 leftmost bits of Cn, the result of the initialization phase 
(Cn,64 to Cn,127). 

4N Version Case: The ruleset of the 4N version is R = 

{24330, 27030}. The cellular automaton is evolved for 
n

2
 = 64 

time steps. 

3) Hybrid CA Mixing Function 

3N Version Case: The hybrid CA mixing function block is 
a cellular automaton with n = 128 cells. The ruleset R for this 
cellular automaton is composed of only nonlinear rules. For 
the 3N version, R = {30, 60, 90, 120, 150, 180, 240, 15, 45}. 

The cellular automaton is evolved 
n

2
 = 64 time steps according 

to the recommendations of Wolfram [14]. At t0, the cellular 
automaton is filled with the 64 rightmost bits from the result 
of the nonlinear hybrid CA block evolutions and the 64 
leftmost bits from the result of the linear hybrid CA block 
evolutions. 

4N Version Case: The ruleset of the 4N version is R = 
{43350, 49980, 42330, 38490, 27030, 25500, 65280, 255, 
22185}. For the 4N version, the cellular automaton must 
evolve for fewer time steps as the diffusion property of the 
cellular automaton spreads more rapidly for 4Neighborhood 
cellular automata compared to 3Neighborhood cellular 
automata [23]. However the cellular automaton is evolved for 
n

2
 = 64 time steps to be compared with the 3N version. 

2) Decryption scheme: Since encryption and decryption 

are the same functions, the decryption scheme is realized by 

regenerating the same keystream z using the key KEY and the 

initial vector IV. 

B. Design Motivation 

In this section, the motivation behind some of the design 
criteria are presented. 

1) Nonlinear Hybrid CA Block: The nonlinear hybrid CA 

block with only nonlinear rules is used to strengthen the 

system. The cryptographic robustness is provided by the 

nonlinear rules, carefully chosen for their high cryptographic 

properties such as the algebraic degree, nonlinearity and 

balancedness. These cryptographic properties increase the 

security of the system against attacks such as algebraic and 

fault attacks [28]. 

2) Linear Hybrid CA Block: Due to the use of rules 90 

and 150, shown to produce maximum cycle length in [16], the 

linear hybrid CA block produces a maximum period. 

3) Hybrid mixing function block: The mixing block is 

used to combine the output from the linear and nonlinear 

blocks. Its ruleset is made of both linear and nonlinear rules 

with good cryptographic properties and maximal length cycle. 

This block is used to further strengthen the system and 

increase its period. 

V. RESULTS 

Several standard tests for evaluating the strength and 
quality of stream ciphers were conducted. The results of those 
tests are presented in this section. 

A. Dieharder Battery of Tests 

DIEHARDER battery of tests refers to a collection of 
standard tests compiled by Brown, Eddelbuettel and Bauer. 
The collection comprises tests written by Brown, Eddelbuettel 
and Bauer as well as other tests designed by Marsaglia and 
Tsang. It also includes some of the tests found in the NIST 
Statistical Test Suite (NIST STS). Since 2013, this test suite 
was updated multiple times, with each update comprising 
more and more tests. It is considered a strong test suite to 
assess the quality of random number generators and other 
cryptographic primitives such as stream ciphers, block ciphers 
and hash functions. For more information about this battery of 
tests, refer to [29]. 

The latest version, used in this article, includes 31 tests. 
The p-values, which are values ranging from 0 to 1, represent 
the results of each of the 31 tests. In order for a 
scheme/algorithm to pass a test, the p-value for that test 
should be in the range [α, 1- α], where α represents the 
significance level. α =0.005 is the significance level usually 
considered. 

Table IV shows the results of the DIEHARDER battery of 
tests for both the 3N and 4N versions of CASC. 

As can be seen from Table IV, both the versions pass all 
the tests. This demonstrates the good statistical properties as 
well as the randomness behavior and the indistinguishability 
property of the keystreams generated by both versions of 
CASC. 

B. NIST Statistical Test Suite 

The NIST Statistical Test Suite (NIST STS) is another 
collection of statistical tests, developed by the National 
Institute of Standards and Technology (NIST). It aims to test 
the randomness property of cryptographic primitives such as 
stream ciphers. It is used in this article to further show the 
good statistical properties and randomness behavior of CASC. 
For more details refer to the NIST special publication 800-22 
[30]. 

As in the DIEHARDER battery of tests, a p-value is used 
to measure if a primitive passes a test or not. The significance 
level used is α=0.001. 

The results of this test suite are shown in Table V for both 
versions of CASC. 
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TABLE IV. DIEHARDER BATTERY OF TESTS 

Test Name 
3N 4N 

p-value Pass? p-value Pass? 

Diehard birthdays 0.84247 PASS 0.52067 PASS 

Diehard OPERM5 0.51995 PASS 0.98337 PASS 

Diehard 32x32 Binary Rank 0.90033 PASS 0.54218 PASS 

Diehard 6x8 Binary Rank 0.04878 PASS 0.63344 PASS 

Diehard_bitstream 0.42121 PASS 0.69582 PASS 

Diehard OPSO 0.00513 PASS 0.48370 PASS 

Diehard OQSO 0.81708 PASS 0.24016 PASS 

Diehard DNA 0.16796 PASS 0.38120 PASS 

Diehard Count the 1s (stream) 0.35543 PASS 0.12572 PASS 

Diehard Count the 1s (byte) 0.59953 PASS 0.56446 PASS 

Diehard Parking Lot 0.17297 PASS 0.57621 PASS 

Diehard Minimum Distance (2d 

Circle) 
0.99291 PASS 0.46500 PASS 

Diehard 3d Sphere (Minimum 

Distance) 
0.43597 PASS 0.88116 PASS 

Diehard Squeeze 0.17122 PASS 0.51642 PASS 

Diehard Sums 0.14394 PASS 0.51966 PASS 

Diehard Runs 0.82783 PASS 0.47367 PASS 

Diehard Craps 0.72554 PASS 0.82186 PASS 

Marsaglia and Tsang GCD 0.78445 PASS 0.82275 PASS 

STS Monobit 0.13080 PASS 0.19039 PASS 

STS Runs 0.02633 PASS 0.59340 PASS 

STS Serial Test (Generalized) 0.41695 PASS 0.55628 PASS 

RGB Bit Distribution 0.58773 PASS 0.56630 PASS 

RGB Generalized Minimum 

Distance 
0.40435 PASS 0.63910 PASS 

RGB Permutations 0.33968 PASS 0.48190 PASS 

RGB Lagged Sum 0.55839 PASS 0.52245 PASS 

RGB Kolmogorov-Smirnov 0.17476 PASS 0.57655 PASS 

DAB Byte Distribution 0.49694 PASS 0.91177 PASS 

DAB DCT (Frequency Analysis) 0.62319 PASS 0.58320 PASS 

DAB Fill Tree 0.43359 PASS 0.76683 PASS 

DAB Fill Tree 2 0.55191 PASS 0.44134 PASS 

DAB Monobit 2 0.51141 PASS 0.94816 PASS 

From Table V, it can be seen that both versions of CASC 
pass all the applicable tests. This further confirms the good 
statistical properties and the randomness behavior of both 
versions of CASC. 

C. Avalanche Effect Test 

Another common test for cryptographic primitives, such as 
stream ciphers, is the avalanche effect test. 

This test was first introduced by Feistel in 1973[31] and 
states that a small difference in the input (1 bit in general) 
should translate into a substantial (around 50% in general) 

difference in the output. This concept is closely related to non-
linearity. Formally, it can be formulated as follows: 

f: {0,1}m → {0,1}n has the avalanche effect if: 

∀ M, M’ ∈ {0,1}m : Hamming(M,M’)=1 

⇒ average(Hamming(f(M), f(M’))=
𝑛

2
 

For CASC, the input is the initial 256-bit configuration C0 
including the 128-bit parameters KEY and IV. Therefore, to 
evaluate the avalanche effect for CASC, 100 different 256-bit 
initial configuration C0 were generated (C0,0 to C0,99). For each 
of these configurations, the keystream of the original 
configuration C0,i and the keystreams of its one-bit change 
replicas (Hamming(C0,i, C0,i,0≤j≤255’)=1, where j is the bit 
changed) are computed. Then the hamming distance between 
the keystreams are computed: 

Hamming (f (C0,i),f (C0,i, 0≤j≤255’)) 

The results of this test for both the 3N and 4N versions of 
CASC are presented in Fig. 4 and 5, respectively. The figures 
show the average value for each bit changed. 

TABLE V. NIST STS 

Test Name 
3N 4N 

p-value Pass? p-value Pass? 

The Frequency (Monobit) 

Test 
0.58369 PASS 0.50865 PASS 

Frequency Test within a 
Block 

0.35048 PASS 0.45733 PASS 

The Runs Test 0.49111 PASS 0.49209 PASS 

Tests for the Longest-Run-

of-Ones in a Block 
0.57416 PASS 0.47883 PASS 

The Binary Matrix Rank Test 0.53414 PASS 0.73991 PASS 

The Discrete Fourier 
Transform (Spectral) Test 

0.26486 PASS 0.48777 PASS 

The Non-Overlapping 

Template Matching Test 
0.54250 PASS 0.53420 PASS 

The Overlapping Template 

Matching Test 
0.28721 PASS 0.44916 PASS 

Maurer’s “Universal 
Statistical” Test 

0.32383 PASS 0.32383 PASS 

The Linear Complexity Test 0.53848 PASS 0.53414 PASS 

The Serial p-value1 Test 0.34176 PASS 0.49896 PASS 

The Serial p-value2 Test 0.91141 PASS 0.50188 PASS 

The Approximate Entropy 

Test 
0.66914 PASS 0.57476 PASS 

The Cumulative Sums 
(Cusums) Forward Test 

0.70265 PASS 0.65476 PASS 

The Cumulative Sums 
(Cusums) Reverse Test 

0.36499 PASS 0.50865 PASS 

The Random Excursions 

Test 
0.52242 PASS 0.42547 PASS 

The Random Excursions 
Variant Test 

0.58369 PASS 0.44899 PASS 
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Fig. 4. Avalanche Effect Test Results for CASC 3N. 

 

Fig. 5. Avalanche Effect Test Results for CASC 4N. 

Fig. 4 and 5 show that for both versions the hamming 
distances concentrate around 50%, with the 4N version 
slightly showing better values. This shows that for both 
versions of CASC are statistically independent from inputs. 

D. Cryptographic Properties of CASC 3N and CASC 4N 

In conjunction with the previous tests, another good 
approach to measure the strength, statistical and randomness 
properties as well as the confusion property of a cryptographic 
primitive is to evaluate its cryptographic properties. In this 
article, the following main cryptographic properties are 
considered: algebraic degree, nonlinearity, balancedness, 
correlation immunity and resiliency. Tables VI to XV 
summarize these cryptographic properties for the nonlinear 
block and the mixing function block of both versions of 
CASC. The cryptographic properties are computed for eight 
cells, assumed to be unknown Boolean values xi, and up to 
three clock cycles for the nonlinear block and for nine cells, 
assumed to be unknown Boolean values xi, and up to three 
clock cycles for the mixing function block. 

1) Nonlinear Block Cryptographic Properties 

3N Ruleset: {30, 120, 180, 45, 30, 120, 180, 45} 

4N Ruleset: {43350, 38490, 25500, 22185, 43350, 38490, 
25500, 22185} 

2) Mixing Function Block Cryptographic Properties 

3N Ruleset: {30, 60, 90, 120, 150, 180, 240, 15, 45} 

4N Ruleset: {43350, 49980, 42330, 38490, 27030, 25500, 
65280, 255, 22185} 

TABLE VI. NONLINEARITY 

Iteration x1 x2 x3 x4 x5 x6 x7 x8  

1 
2 2 2 2 2 2 2 2 3N 

4 4 4 4 4 4 4 4 4N 

2 
8 8 8 8 8 8 8 8 3N 

32 56 48 48 48 56 48 48 4N 

3 
44 40 44 40 36 40 44 40 3N 

464 432 432 448 440 440 448 400 4N 

TABLE VII. ALGEBRAIC DEGREE 

Iteration x1 x2 x3 x4 x5 x6 x7 x8  

1 
2 2 2 2 2 2 2 2 3N 

2 2 2 2 2 2 2 2 4N 

2 

3 

[1] 
3 3 3 3 3 3 3 3N 

3 3 4 3 4 3 4 3 4N 

3 
5 5 4 4 5 5 4 4 3N 

5 5 6 5 5 5 6 5 4N 

TABLE VIII. RESILIENCY 

Iteration x1 x2 x3 x4 x5 x6 x7 x8  

1 
0 0 0 0 0 0 0 0 3N 

1 1 1 1 1 1 1 1 4N 

2 
0 1 0 0 1 1 0 0 3N 

1 1 0 0 1 1 0 0 4N 

3 
1 1 0 0 0 1 0 0 3N 

0 -1 0 0 0 -1 -1 1 4N 

TABLE IX. CORRELATION IMMUNITY 

Iteration x1 x2 x3 x4 x5 x6 x7 x8  

1 
0 0 0 0 0 0 0 0 3N 

1 1 1 1 1 1 1 1 4N 

2 
0 1 0 0 1 1 0 0 3N 

1 1 0 0 1 1 0 0 4N 

3 
1 1 0 0 0 1 0 0 3N 

0 0 0 0 0 0 0 1 4N 

TABLE X. BALANCEDNESS 

Iteration x1 x2 x3 x4 x5 x6 x7 x8  

1 
T T T T T T T T 3N 

T T T T T T T T 4N 

2 
T T T T T T T T 3N 

T T T T T T T T 4N 

3 
T T T T T T T T 3N 

T F T T T F F T 4N 
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TABLE XI. NONLINEARITY 

Iteratio

n 
x1 x2 x3 x4 x5 x6 x7 x8 x9  

1 

2 0 0 2 0 2 0 0 2 
3

N 

4 0 0 4 0 4 0 0 4 
4

N 

2 

8 8 8 8 12 8 8 0 8 
3

N 

32 32 48 32 48 48 0 32 48 
4

N 

3 

32 32 48 48 48 32 32 32 32 
3

N 

38
4 

25
6 

38
4 

44
8 

44
8 

38
4 

38
4 

38
4 

38
4 

4
N 

TABLE XII. ALGEBRAIC DEGREE 

Iteration x1 x2 x3 x4 x5 x6 x7 x8 x9  

1 
2 1 1 2 1 2 1 1 2 3N 

2 1 1 2 1 2 1 1 2 4N 

2 
2 2 2 3 2 2 2 1 3 3N 

3 2 2 3 2 2 1 2 3 4N 

3 
3 2 3 4 3 3 2 2 4 3N 

4 3 3 5 3 3 2 2 5 4N 

TABLE XIII. RESILIENCY 

Iteration x1 x2 x3 x4 x5 x6 x7 x8 x9  

1 
0 1 1 0 2 0 0 0 0 3N 

1 2 2 1 3 1 0 0 1 4N 

2 
2 0 2 1 0 0 0 0 0 3N 

1 2 2 2 0 -1 3 1 3 4N 

3 
1 0 1 0 2 0 0 0 0 3N 

0 1 2 2 0 -1 0 -1 1 4N 

TABLE XIV. CORRELATION IMMUNITY 

Iteration x1 x2 x3 x4 x5 x6 x7 x8 x9  

1 
0 1 1 0 2 0 0 0 0 3N 

1 2 2 1 3 1 0 0 1 4N 

2 
2 0 2 1 0 0 0 0 0 3N 

1 2 2 2 0 0 3 1 3 4N 

3 
1 0 1 0 2 0 0 0 0 3N 

0 1 2 2 0 0 0 0 1 4N 

TABLE XV. BALANCEDNESS 

Iteration x1 x2 x3 x4 x5 x6 x7 x8 x9  

1 
T T T T T T T T T 3N 

T T T T T T T T T 4N 

2 
T T T T T T T T T 3N 

T T T T T F T T T 4N 

3 
T T T T T T T T T 3N 

T T T T T F T F T 4N 

From these tables, it can be noted that, with the exception 
of correlation immunity and resiliency, the nonlinearity and 
the algebraic degree increase with each iteration or remain 
true in the case of balancedness for both 3N and 4N. The 
decrease of the values of correlation immunity and resiliency 
can be explained by the fact that these properties are in 
contradiction with the three others (nonlinearity, algebraic 
degree and balancedness) [4]. Therefore, a compromise should 
be found. For a stream cipher, the algebraic degree and the 
nonlinearity can be judged as more important properties to 
achieve than the correlation immunity and resiliency 
properties. Moreover, it can be noted that for these two 
properties (nonlinearity and algebraic degree), the 4N version 
of CASC displays better properties than the 3N version. This 
confirms the general tendency that going from 3N to 4N 
improves the statistical properties as well as the cryptographic 
properties of the stream cipher scheme presented here. 

VI. SECURITY ANALYSIS 

As the main criterion for a stream cipher is to resist all 
known attacks, a security analysis is conducted in this section. 
Resisting an attack means that the computational complexity 
of that attack is no less than that of an exhaustive key search 
attack which is O(2n). 

This section covers some of the major known attacks 
against stream ciphers and the countermeasures used in the 
design of CASCA are pointed out. 

A. Side Channel Attacks 

Side channel attacks [32] are a class of attacks targeted at 
the hardware implementation of ciphers. By analyzing 
different physical characteristics, such as power consumption, 
noise or heat dissipation, during the execution time, these 
attacks try to recover the internal state of the keystream 
generator in the case of stream ciphers. In the case of the 
stream cipher presented in this article, the complexity of this 
kind of attacks is higher due to the use of a linear block, a 
nonlinear block and a mixing function block based on cellular 
automata that make the cipher quite difficult to reverse. 

A. Time/Memory/Data Tradeoff Attack 

In the time/memory/data tradeoff attack [32] the goal of 
the attacker is to lower the complexity of the exhaustive key 
search attack by establishing a lookup table of pairs of 
key/keystream during the offline phase and observing the 
keystreams generated by unknown keys during the online 
phase and trying to find matches. 

The complexity of this attacks is O(2n/2), where n is the 
inner state of the stream cipher. In the case of CASCA, n = 
256 bits. Therefore, this attack is difficult to achieve. 

B. Algebraic Attacks 

In this type of attacks, the cryptographic system studied is 
modelled using algebraic equations. This is performed by first 
identifying an algebraic equation set relating the first 
configuration C0 with the generated keystream. The maximum 
number of keystream bits is collected to construct the 
equations system. By solving this system, the initial 
configuration and consequently the secret key are recovered. 
To prevent this type of attacks, the algebraic degree and the 
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nonlinearity of the functions used in the keystream generation 
mechanism must be as high as possible [32]. 

From Tables VII and XII, it is clear that the algebraic 
degree and nonlinearity increase with each iteration. The 
number of cycles used is the recommended one in terms of the 
neighborhood size. These results make the system robust 
against this type of attacks. 

C. Linear Approximation Attacks 

The linear cryptanalysis technique is a known plaintext 
attack designed by Matsui to break DES encryption scheme 
[33]. This technique aims to find a linear approximation of a 
symmetric system’s behavior from a number of plaintext bits 
and ciphertext bits in relation to the key bits. 

To prevent this type of attacks, the nonlinear and the 
mixing blocks are useful to decrease the probability to find 
such an approximation. From Tables VII and XII, it is clear 
that the algebraic degree and nonlinearity increase with each 
iteration and thus make this kind of attacks difficult to realize. 

D. Correlation Attacks 

In 1985, Siegenthaler [34] proposed a known plaintext 
attack called the correlation attack which aims to recover the 
initial configuration of the internal state by using some known 
keystream bits. 

High nonlinearity, balancedness, resiliency and correlation 
immunity are good countermeasures to avoid this kind of 
attack. As shown by the tables summarizing the cryptographic 
properties of CASCA 3N and 4N, the stream cipher presented 
in this article is quite robust against correlations attacks. 

E. Fault Attacks 

In fault attacks [23], faults are injected and the difference 
between ciphertexts containing faults and original ciphertexts 
without faults is exploited to recover the key. In the case of 
CASCA, the tracking of the faults is made difficult due to the 
high diffusion property of cellular automata used in the 
building blocks. 

VII. CONCLUSION 

In this article, a new stream cipher scheme (N-CASC) was 
presented. It is a grain-like stream cipher based on cellular 
automata comprising three building blocks: a linear block, a 
nonlinear block, and a mixing function block. The article 
details the internal functioning of the mechanism and provides 
a comparison of its 3N and 4N versions. The comparison, 
which is based on the statistical tests (Diharder and NIST 
STS) as well as the cryptographic properties and the security 
analysis, serves the purpose of outlining the advantages and 
disadvantages of each version. The 4N version presents better 
statistical results and displays a better nonlinearity and a 
higher algebraic degree than the 3N version. However, the 3N 
version shows better results regarding the correlation 
immunity and resiliency properties. 

Based on the findings of the present paper, a new design 
can be proposed, in the future, combining building blocks of 
3Neighborhood cellular automata and 4Neighborhood cellular 
automata taking advantage of the features of each of the 
configurations for better levels of security and higher levels of 

randomness. Another future prospect might be the 
investigation of higher neighborhood configurations (5-
neighborhood cellular automata for example) and higher 
dimensions (2D and 3D). 
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